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Abstract—The electronic properties of Silicon nanowires are
studied using empirical tight binding sp3d5s∗ model for three
different cross-sectional shapes - square, circular and triangular.
For two different growth directions <100> and <110>, it is
observed that the electron effective masses at the Γ point is
lowest for triangular wire. The conduction band valley splitting
at the Γ point for <100> wire is higher for triangular wire
compared to the other two shapes. The valence bands are more
degenerate for circular wire than the other two and their splitting
is highest for square wire. Hole effective mass at the valence band
maxima for <100> wire is significantly lower for triangular wire
than that of the other two shapes which show large increase in
hole effective mass as a result of quantum confinement. These
electronic properties are compared against same cross-section
area which is varied from 0 − 30nm2. The energy band gap
shows no variation due to wire shape. It only depends on cross-
section area. Variations in the electronic properties due to shape
diminish gradually as cross-sectional area is increased.

Index Terms—Silicon Nanowires (SiNWs), cross-sectional
shape.

I. INTRODUCTION

There has been aggressive downscaling of conventional
transistors in the past few years by reducing gate length,
oxide thickness and channel depth. Performance degradation
takes place due to this scaling including short channel effects,
reduced electron mobility and weakened gate control. For
future nanotechnology, novel materials such as nanowires can
be attractive building blocks because of their superior charac-
teristics. The controlled growth of silicon nanowires (SiNWs),
their applications as field effect transistors and logic circuits
have been demonstrated experimentally [1]–[4]. The Silicon
Nanowire Field Effect Transistors (SiNWFET) with gate all
around structure show excellent gate control and current drive
and they are also compatible with CMOS processes.

As the nanowires’ dimension is in the nanometer regime,
effects like tunneling and quantum confinement play dominant
role.There have been numerous simulation works on Silicon
nanowires in recent times. The electronic properties of SiNWs
has been studied using atomic orbital basis with empirical
tight-binding parameters [5]–[7] and also using first principle
calculations [8]–[10]. At the device level, nanowire transistor
current has been calculated using bulk effective masses [11],
[12], nanowire confined masses [12]–[14] and full band sim-
ulation [15].
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Fig. 1. <100> Silicon nanowires with different cross-sectional shapes -
Square, Circular and Triangular.

Nanowire of different orientations and shapes have been
studied by several experimental groups [4], [16]. Square [11],
[12] and circular [6] cross-sections are the most frequently
used shapes for simulations. We also find first principle
calculations for pentagonal and hexagonal nanowires [17],
[18]. In this paper, Silicon nanowires are simulated using
the sp3d5s∗ model to observe the effects of different cross-
sectional shapes. Calculations show that the conduction and
valence band degeneracy and also the effective masses change
with wire shape.

II. APPROACH

The SiNWs used in this study are grown in <100> and
<110> directions. The cross section of <100> SiNWs of all
shapes (square, circular and triangular)are shown in Fig. 1.
The nanowire growth direction is x, which is into (or out of)
the paper. The y and z directions are <010> and <001>. The
cross section looks rectangular. The unit cell is 0.543 nm long
and has 4 atomic layers. For growing circular or triangular
wires, a square nanowire is grown first. Then the outer atoms
are eliminated to form the desired shape. The open bonds at
the wire boundaries are passivated using hydrozen.

For band structure calculation, the Hamiltonian is created
as

H(kx) = H0(kx) + t01e
ikx4x + t10e

−ikx4x (1)

Here kx is the one dimensional (1D) wave vector and 4 x is
the distance between the last layer of a unit cell and the first
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Fig. 2. The bandstructure of <100> SiNWs with (a) square, (b) Circular, (c) Triangular cross-section

layer of the next unit cell. The matrix elements of H0(k) are
created from

H0(i, j) =< φi,n|H|φj,m > eikx(xm−xn) (2)

and those of t01 are created from

t01(p, q) =< φp,u|H|φq,v > (3)

Here n and m label the atoms in the same unit cell, and u and v
label the atoms between adjacent unit cells. The basis φ, is the
sp3d5s∗ atomic orbitals and φi,n is the ith orbital of the nth

atom. The tight-binding parameters are taken from Boykin [19]
and Zheng [20] and the energy integral expressions are taken
from Slater [21]. The band structure is obtained by calculating
the eigen energies of Hkx defined in Eq. 1. Finite difference
method is employed to calculate effective mass,

1
m∗ =

1
h̄2

∂2E

∂k2
x

=
1
h̄2

E− − 2E0 + E+

(4kx)2
(4)

where E0 is the energy at the desired value of k where we
want to calculate m∗ and E+ and E− are the energies at
k±4kx respectively. We use a 4kx value of (0.001)× π/a.
In this paper, we use the term dimension to imply length of
one side when the cross-section is square, diameter for circular
and length of one arm for triangular nanowire. In Fig. 1,
D=4.38nm.

III. NUMERICAL RESULTS AND DISCUSSIONS

Fig. 2 shows the bandstructure for a <100> oriented Silicon
nanowire for three different shapes for same cross-section area
(2.70nm2). The bulk Silicon is an indirect bandgap material
having conduction band minimum at 0.832 × 2π/a in the ∆
direction. It has six equivalent ∆ valleys. The nanowire is
a direct band gap material. For nanowire grown in <100>
direction, four of the six equivalent ∆ valleys are projected
at Γ point in the one dimensional Brilluoin zone forming the
conduction band minimum. The other two valleys are zone
folded to ±0.36 × π/a in the wire Brilluoin zone. The four
valleys are degenerate at the Γ point. For <110> wires, two
of the bulk valleys are projected at the Γ point and the other
valleys are found at ±0.81×π/a.
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Fig. 3. Bandgap variation with (a) dimension, (b) cross-section area.

Fig. 3(a) shows the variation of band gap with dimension.
The band gap increases with decreasing cross-section area
as a result of quantum confinement. For large wires, the
bandgap equals that of bulk Silicon (1.13ev). When plotted
against dimension, square nanowires exhibit lowest bandgaps
and the bandgap for the triangular wire is the highest. But this
dissimilarity is not for wire shape, because the triangular wire
with dimension D has an area of 0.433D2, which is 43.3% of
the square wire area (D2) having the same dimension D. This
fact is clear when we plot the bandgap against cross-section
area, the bandgap for all shapes are remarkably similar (Fig.
3 (b)). This reveals that the energy gap simply depends on the
wire cross-section area, not on the shape.

The conduction band degeneracy at the Γ point for <100>
wire is considered next (Fig. 4 (a)). The forth highest band is
plotted taking the lowest conduction band as reference. The
four valley degeneracy is almost similar for square and circular
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Fig. 4. Effect of wire cross-section area on ∆4 and ∆2 conduction band
valleys, (a) Variation of forth highest conduction band energy at ∆4 valley
taking the lowest energy as reference, (b) Splitting of ∆4 and ∆2 valleys.
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Fig. 5. Effect of wire area on the splitting of the three highest valence bands
taking the highest valence band Ev1 as reference, (a) The energies Ev2 and
(b) Ev3 with respect to Ev1.

wires, while the valleys are less degenerate for triangular
wire. As the cross-section area is increased, the separation
between ∆4 and ∆2 valley energies is decreased (Fig. 4
(b)). This energy difference is lowest for square wire and
highest for triangular wire. Fig. 5 shows the effect of quantum
confinement on the three highest valence bands. The second
and third highest valence bands are plotted taking the topmost
valence band as reference. Here the valence band splitting is
lowest for circular wire. Splitting for triangular wire is less
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Fig. 6. Electron effective mass for <100> wire at (a) ∆4 valley (b) ∆2

valley versus area.

than that of square wire at lower area(< 12.0nm2) after which
it is similar for both the wires.

Next we calculate effective masses at ∆4 and ∆2 valleys for
<100> oriented nanowires. The effective mass at ∆4 valley
decreases with wire area and approaches the bulk Si transverse
electron effective mass of 0.20∗m0 as area is increased as
shown in Fig. 6. At ∆4 valley effective mass is highest for
square wire and that of triangular wire is the lowest. m∗

c at
∆2 valley is lowest for circular wire while that of the other
two are almost similar. m∗

c at ∆2 valley reaches the bulk Si
longitudinal electron effective mass of 0.89m∗

0 for large wires
(>6nm). Electron effective mass at the Γ point for <110>
wire m1 is shown in Fig. 7 (a). With dimension, m1 increases
until it reaches the bulk value (0.20∗m0). Again the triangular
wires show lower values than the other two wires. Fig. 7
(b) shows the electron effective mass m2 at ±0.81×π/a.
It decreases with wire area and reaches a steady value of
0.55∗m0 for large wires. Then we calculate hole effective mass
for the highest valence band for <100> wire. Fig. 8 shows
the variation of hole effective mass. For triangular wire, hole
effective mass is approximately two times larger than that of
the bulk Si heavy hole at large dimension. It reaches a value
of −0.5m∗

0 for cross-section area > 20nm2. For square and
circular wires, hole effective masses are much heavier (atleast
five time than the bulk value). m∗

v is highest (magnitude only)
for circular wire. For reference, the bulk Si valence band
<100> effective mass is mhh = −0.276m0.

IV. CONCLUSION

The bandstructure changes silicon nanowires for different
cross-section shapes are explored. Most of the electronic prop-
erties are different for triangular wire compared to the other
two shapes. The bandgap is independent on the wire shape and
it only depends on the value of cross-section area. The electron
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Fig. 7. Variation of electron effective mass with area for <110> wire, (a)
m1 and (b) m2. The definitions of m1 and m2 are given in the text.
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Fig. 8. Variation of hole effective mass with area for <100> wire.

effective mass at the Γ point is lowest for triangular wire for
both growth directions (<100> and <110>). The conduction
band energies at the Γ point is more degenerate for square
and circular wires compared to the triangular wire. And the
valence band effective mass for triangular wire is much lower
than that for square and circular wires.
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